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Locomotion and generation of flow at low Reynolds number are subject to severe limitations due to the
irrelevance of inertia: the “scallop theorem” requires that the system have at least two degrees of freedom,
which move in non-reciprocal fashion, i.e. breaking time-reversal symmetry. We show here that a minimal
model consisting of just two spheres driven by harmonic potentials is capable of generating flow. In this pump
system the two degrees of freedom are the mean and relative positions of the two spheres. We have performed
and compared analytical predictions, numerical simulation and experiments, showing that a time-reversible
drive is sufficient to induce flow.
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Microscopic systems capable of generating flow are very
common in Nature, and may prove inspirational for biomi-
metic micro- and nanopumps and swimmers �2�. Assemblies
of motile cilia are found in various eukaryotic living sys-
tems. In humans, for example, they cover the epithelial tissue
of important organs, including the lungs, ventricles in the
brain, and the oviduct in the female reproductive apparatus
�3�. They transport fluid along their surface in a given direc-
tion by controlling the effective drag coefficient to change
between a “power” and a “recovery” stroke �4�. This is one
simple way to satisfy the “scallop theorem” �5� that sets very
strict physical requirements for swimming and pumping at
small velocity to viscosity ratio at the microscale, where the
Reynolds number is to good approximation zero. A necessary
condition, in order to pump, is that the sequence of the sys-
tem’s configurations has to break time-reversal symmetry
�5�. The scallop theorem applies to pumps as well as swim-
mers �6�, so no net flow will occur unless the generating
motion is non-reciprocal. This implies a minimum of two
degrees of freedom, with which time-reversal symmetry can
be broken by an appropriate sequence of moves �7,8�. The
design of micro and nanofluidic devices �9,10� which mimic
biological examples is an emergent field of research with
potential applications in medicine and biotechnology �11�. If
future nanobot swimmers and pumps might be made through
a process of self assembly, the question is how few compo-
nents are necessary to generate flow, and how simple can the
system be.

In this paper we describe a minimal model of pump, in-
spired by the three-sphere swimmer �7,8,12,13� where the
actuated motion along one axis reduces the description to a
one dimension �14�. The two-sphere system reduces further
its complexity. In the limit of low driving frequency and for
average bead separation larger than the bead diameter, the
hydrodynamic interaction is described by the Oseen tensor
�8,15�, and the equations of motion are simple enough to
allow for explicit calculations. The analytical results back up
numerical calculation and experimental data to confirm the
surprising result that two beads subject to harmonic poten-
tials can generate a net flow even when the external drive is
reciprocal.

The pump is composed of two spheres of radius a labeled
with L �left� and R �right�, positioned on the x axis at an
initial distance d as illustrated in Fig. 1. Each sphere is sub-
ject to an harmonic potential, which is realized experimen-
tally by an optical trap, anchored to the laboratory reference
frame. Bead R is actively driven: its confining potential
switches between two positions along the x direction sepa-
rated by a distance �, with a frequency 1 / �2��. The position
of the minimum varies as a function of time as a square wave
according to ��t�=��2n� , �2n+1����t�, where � denotes the
indicator function and n is a positive integer. Bead L is in a
stationary potential. There are two distinct phases, corre-
sponding to the values �=1,0 of the active drive, which
constitute a basic cycle of dynamics.

Despite the fact that the trap movement is reciprocal in
time, the external actuation by means of springs cannot guar-
antee an instantaneous balance of the active forces, so the
pump is not instantaneously force free �2,16�. Unlike for
swimmers, however, this is not problematic: a pump is a
spatially confined system and its center of mass lies within a
bounded region. In this system this circumstance is also a
necessary condition, assuring that two degrees of freedom
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FIG. 1. �Color online� The two-bead micropump setup. Bead L
is held in a stationary optical trap, while bead R is subject to a
time-reversible driving force from a switching optical trap. This
assembly is capable of generating flow. The harmonic trap potential
is shown schematically overlayed on snapshots taken from the
experiments.
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are accessible for pumping. Notably, a weaker condition
holds: the pump is force free on average over a cycle period.

In a low Reynolds number fluid, the actively driven par-
ticle undergoes a purely dissipative dynamics, just like a
forced oscillator that relaxes towards the minimum of its
confining potential. While bead R moves, it interacts hydro-
dynamically with bead L, which can vary its position thanks
to the softness of the harmonic potential. Their dynamics is
described, in the regime where a�d, using the Oseen tensor
approximation �17�. Denoting with xL the coordinate of L
and similarly for R, the governing equations read as

� ẋL = − �xL − �
�

r
�xR − �d − ����;

ẋR = − ��xR − �d − ���� − �
�

r
xL;� �1�

where we have introduced the three parameters 	=6
�a,
�=k /	, �=3a /2, and the relative distance r=xR−xL. Here �
is the fluid viscosity, 	 is the Stokes’ drag coefficient and k is
the stiffness of the spring. The equations show that the geo-
metric parameters of the model have a clear interpretation:
the inverse of d sets the strength of the hydrodynamic cou-
pling between the spheres, and � is the oscillation amplitude
of the actively driven particle.

The model reveals an intriguing property. The presence of
two active drives, without any constraint, would provide the
system with two “obvious” degrees of freedom. However,
the temporal dependence of the active mechanism described
here is symmetric under time reversal, as can be seen by
inspecting Fig. 1 from top to bottom and vice versa. Thus, at
first sight it might appear that the system cannot generate net
flow. Instead, the left-right symmetry is broken.

The pumping can be quantified by focusing on the bead in
the resting trap, L; an asymmetry in its trajectory reveals an
asymmetry in the flow field. We define the order parameter

�x�d,�,�� ª
1

2�
�

0

2�

xLdt �2�

to quantify the magnitude and the direction of the flow as a
function of the parameters d, �, and �. Its physical interpre-
tation is as follows. Imagine that bead L is an isolated sphere
attached to a spring, and subject to the same flow field as the

one generated by the pump. Then Hooke’s law gives F̄
=k�x, allowing to measure the equivalent mean force ex-
erted by the pump. Using Stokes’ law this flow field can be

converted into a mean velocity of the fluid v̄= F̄ /	.
The analysis of the two phases of motion helps to under-

stand how the symmetry breaking occurs �1�. �I� in Phase 1,
the hydrodynamic coupling between beads L and R has a
strength of the order of 1 /d and increases as the spheres
approach to reach their minimum distance. According to the
positions of bead L, the fluid is pushed in the sense x0.
Eventually bead L is restored back to equilibrium xL=0, and
in this relaxation some fluid is dragged in the opposite direc-
tion. �II� in Phase 2, hydrodynamic coupling is stronger �on
the order of 1 / �d−���. The dynamics looks similar to the
mirror image of the previous one, with bead R dragging bead

L in the sense of x�0, but now the stronger coupling moves
a greater amount of fluid. The overall effect is a net thrust in
this direction. An example of such motion for bead L is il-
lustrated in Fig. 3�a�. The mismatch in hydrodynamic cou-
pling between end of Phase 1 and beginning of Phase 2 is
the root of the symmetry breaking and is made possible by
the softness of the driving potentials. Such a phenomenon is
analogous to the soft swimming described in �18�. As we see
the pumping direction is determined by the position of the
actuated particle: if bead R is active, the pumping is in the
direction of x�0 and vice versa if bead L is active.

Introducing the reduced distance u=r−d and mean coor-
dinate c= �xL+xR� /2, in the approximation of small oscilla-
tions the equations of motion can be expanded as power
series in the parameter u /d. With this change, Eqs. �1� de-
couple into an equation for u, independent of c, and a linear
equation for c involving both variables. The dynamics at the
leading order in u is obtained by substituting 1 / �u+d�
�1 /d in the resulting equations. This corresponds to the
study of the linearized system and a careful analysis shows
that no pumping is achieved. Physically, this fact can be
understood by interpreting 1 /r as an effective drag felt by the
center of mass c. When r is approximatively constant, then
the drag doesn’t change during the two phases of dynamics
causing therefore no net thrust on c and thus on the fluid.

Pumping arises as a nonlinear effect which can be seen
already at the next order of expansion. According to 1 / �d
+u��1 /d−u /d2, the reduced distance u has to satisfy of a
set of Riccati equations depending on the parameter �,

u̇ = P� + Q�u + Ru2, �3�

where we have defined P�ª−����1−� /d�, Q�ª−��1
−� /d+����� /d2� and Rª−�� /d2. The center-of-mass
equation maintains its linear character,

ċ̃� = − �	1 +
�

d
−

u�

d2 
c̃� �4�

for the reduced variable c̃�ªc− �d−��� /2. Both equations
can be solved for �=0,1. Further one must impose appro-
priate conditions on the solutions, representing: �i� the con-
tinuity of the whole solution in the middle of the cycle where
u0���=u1��� and c0���=c1���; and �ii� the steady-state condi-
tion for which the positions at the beginning of the cycle
coincide with those at the end, given by u0�2��=u1�0� and
c0�2��=c1�0�. Finally, using the inverse transformation from
u ,c to get xL and xR and taking the temporal average of xL,
we find that the order parameter �x shows a net pumping
over two phases of dynamics.

Figure 2 reports the plots of the resulting expression as
functions of �, �, and d for typical experimental values of a
and �. There, the geometrical variables � and d follow the
straightforward trend where larger oscillation amplitudes �
generate larger flow. Also, larger distance d is related to
smaller generated flow. However, the plots show also a non-
trivial behavior as a function of the temporal parameter �.
The form of the solution suggests a natural way to rescale the
parameters, defining the nondimensional quantities ��

ª� /a,
d�
ªd /a, and ��

ª��. There are two different regimes, �i�
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for small values of �� the flow increases and �ii� for large
values of �� it decreases. The reason for the latter is that in
this regime the beads have sufficient time to relax in the
harmonic traps, so that the area described by the function xL
reaches a maximum value, after which it remains constant at
increasing ��. Dividing this area by �� gives a decreasing
function of ��. Interestingly, at the intersection of these two
regimes the plot shows that �x presents a maximum, thus
defining an optimal pumping region. Due to the particular
form of the function �x, however, this has to be evaluated
numerically. For the typical experimental values in use it
corresponds to ��165 ms.

For ��1 /�, where we can compare with our experimen-
tal data, the expression of �x simplifies considerably. At the
leading order the result is a simple power-law dependence

�x

a
�

9

16��

����2

�d��3 . �5�

Integration of the full equations of motion �1� is also per-
formed numerically by means of Taylor’s method �14�. Com-
parison with the analytical results shows a good agreement,
despite the low-order expansion of the analytical solution, as
can be seen by looking at Figs. 3�a� and 3�b�. This is not
surprising as the Oseen tensor is a description valid for large
separation of the beads, and in this regime the perturbative
result is a good approximation to the exact solution.

The dynamics has been investigated experimentally by
means of an optical tweezer, described fully in �8�. A laser

beam �IPG Photonics, PYL-1-1064-LP, �=1064 nm,
P max=1.1 W� is focused through a water immersion objec-
tive �Zeiss, Achroplan IR 63x/0.90 W�, trapping from below.
The laser beam is steered via a pair of acousto-optic deflec-
tors �AA Opto-Electronic, AA.DTS.XY-250@1064 nm� con-
trolled by custom built electronics, allowing multiple trap
generation by time sharing, with subnanometer position res-
olution. Instrument control and data acquisition �70 frames
per second, with an exposure time of 13 ms� are performed
by custom software.

A typical experiment consists of trapping two silica beads
�3.0 �m diameter, Bangs Labs� in a solution of glycerol
�Fisher, Analysis Grade� and is divided in two parts: in the
first calibration stage all the traps are kept at rest, and the
beads undergo only Brownian motion confined by the traps.
During the second stage we reproduce the cycle of Fig. 1
with lasers traps, iterating the sequence many times �8�. The
whole procedure lasts typically 6 minutes, during which we
collect about 40 000 frames. We performed three runs for
each set of parameters.

By analyzing images by correlation filtering and two-
dimensional fitting, we obtain the beads’ position with sub-
pixel �around 1 nm� resolution. The expected values of �x
are below the limit of the experimental resolution �indeed the
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FIG. 2. �Color online� Analytical characterization of the pump.
�a� �x as function of � and �. The trend as a function of � is
intuitive: the larger the oscillation amplitude, the larger the gener-
ated flow. There is a nontrivial behavior as function of �, showing
that the maximum pumping is obtained at maximum � for some
value of � in the middle of the scale. d here is fixed to the experi-
mental value of 6 �m. �b� �x as function of d and �. We see the
same phenomenology as in �a�. Here the effect of the distance is to
decrease the pumping monotonically. �c� Plot of �x as a function of
� and d. Again, it shows a monotonic dependence from the distance
and �. Looking at these plots, is easy to understand that the scaling
exponents of �x are functions of all these parameters. In particular,
the scaling law of �x with � depends on �. In all these cases the
values of � and a are set to typical values taken from the
experiments.
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FIG. 3. �Color online� Experiment, analytical calculations and
simulations agree in quantifying flow generation by the two-bead
micropump. �a� As bead R is driven by the optical trap, it causes
displacements of bead L around its equilibrium position. Markers
show the position of bead L averaged over many cycles. The ana-
lytical solution, �green dashed curve� and simulation data �blue con-
tinue curve� closely reproduce the experiments. The displacement
values p+ and p− at the peaks are an accurately measurable quantity.
Matching the simulations to the peak values enables the observed
p+ and p− to be converted to force by a one-to-one mapping; �b� the
mean force exerted by the pump on the fluid is measured from the
motion of the bead in the stationary trap, and it grows as a function
of the pump stroke length �. Markers and lines are as in panel �a�.
In addition the approximate solution �Eq. �5�� is shown �black dash
dotted line�.
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smallest forces measured here correspond to 0.1 nm dis-
placements�, and therefore we characterize the pumping in-
directly, relying on the measurable asymmetry of peaks of
bead L’s position �8�. Regarding each cycle as an indepen-
dent realization of a stochastic process, we construct the
mean dynamic cycle of L �see Fig. 3�a��. Compared to the
equilibrium position of the bead, that can be determined
from the mean cycle itself but only for large values of ��

when the dynamics is fully relaxed, we indicate the maxi-
mum with p+ and the minimum with p−. We define the alge-
braic sum �ªp++ p− to quantify the asymmetry of motion
and convert it to �x with the aid of simulations. This proce-
dure allows to compare extremely small forces, of the order
of 5�10−4 pN, which, to our knowledge, are the smallest
forces measured with optical traps.

In Fig. 3�b� we plot the corresponding mean force ob-
tained from the experiments at varying � and compare this
result with analytical predictions and simulations. The ex-
perimental values considered are a=1.5 �m, d=6 �m, �
=640 ms, �=0.022�0.001 �ms�−1, T=25 °C and a trap
stiffness value of k=5.32�0.71 pN /�m. The results show a
good agreement between the measured force and the pre-
dicted values. Approximate analytical solution �5� gives a
good description of pumping.

It is interesting to compare the effectiveness of the current
minimal pump to the related three-bead model system �8�.
Close to the optimal pumping region, and for matching val-
ues of the stroke � and interparticle distance d, the average
force exerted on the fluid by the three-bead model exceeds

the two-bead companion by about one order of magnitude.
The poorer performance with two beads is not surprising,
and minimality is obtained at the expense of performance.
However we would like to point out that the two pumps have
also a profoundly different nature. In the three-bead model,
pumping is achieved by moving the lateral beads in a non-
reciprocal fashion. The direction of the flow is determined by
the first moving trap and can be reverted inverting the trap
moves. The nature of the drive in the two-bead model pre-
vents all this and the pumping direction is uniquely deter-
mined by the disposition of the active trap, as discussed
above.

In conclusion, an extremely simple system composed of
just two spherical beads, only one of which is actuated by a
time-reversible trap movement, is shown to be capable of
generating flow. A key property of the system is that the
beads are held and driven by soft potentials. This allows the
two-bead system to explore two degrees of freedom, thus
satisfying the “scallop theorem.” The simplicity of this el-
ementary pump makes it possible to understand the fluid
dynamics analytically and suggests this as a feasible micro-
pump that could be deployed experimentally in the context
of microfluidic systems.
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